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ABSTRACT

Ocean heat content anomalies are analyzed from 1950 to 2011 in five distinct depth layers (0–100, 100–300,

300–700, 700–900, and 900–1800m). These layers correspond to historic increases in common maximum

sampling depths of ocean temperature measurements with time, as different instruments—mechanical

bathythermograph (MBT), shallow expendable bathythermograph (XBT), deep XBT, early sometimes

shallower Argo profiling floats, and recent Argo floats capable of worldwide sampling to 2000 m—have come

into widespread use. This vertical separation of maps allows computation of annual ocean heat content

anomalies and their sampling uncertainties back to 1950 while taking account of in situ sampling advances and

changing sampling patterns. The 0–100-m layer is measured over 50% of the globe annually starting in 1956,

the 100–300-m layer starting in 1967, the 300–700-m layer starting in 1983, and the deepest two layers con-

sidered here starting in 2003 and 2004, during the implementation of Argo. Furthermore, global ocean heat

uptake estimates since 1950 depend strongly on assumptions made concerning changes in undersampled or

unsampled ocean regions. If unsampled areas are assumed to have zero anomalies and are included in the

global integrals, the choice of climatological reference from which anomalies are estimated can strongly

influence the global integral values and their trend: the sparser the sampling and the bigger the mean dif-

ference between climatological and actual values, the larger the influence.

1. Introduction

The world’s oceans have absorbed roughly 90% of the

anthropogenic warming from greenhouse gasses since

the 1960s (Bindoff et al. 2007). This well-documented

ocean warming occurs primarily in the upper 0–700m

(Domingues et al. 2008; Ishii and Kimoto 2009; Levitus

et al. 2009), but warming has also been observed at

intermediate and middepths, from 700 to 2000m (von

Schuckmann et al. 2009; Levitus et al. 2012), and in the

abyssal ocean, well below 2000m (Purkey and Johnson

2010; Kouketsu et al. 2011).

Historically, ocean temperature sampling is inhomo-

geneous both by geographic region and depth from year

to year, with major shifts in observing techniques and

observational programs from decade to decade (Johnson

and Wijffels 2011). Accurate but spatially sparse tem-

perature measurements using reversing thermometers,

sometimes to full depth, commenced after 1874. These

thermometers were gradually replaced, starting in the

1960s, with conductivity–temperature–depth (CTD) in-

struments. Starting in the 1930s, mechanical bathyther-

mographs (MBTs) made it easier to measure the upper

ocean temperature (sampling as deep as 145–300m,more

often shallower than deeper). They were widely used in

the 1950s and 1960s. Starting in 1966, the expendable

bathythermograph (XBT) began to replace the MBT

for upper ocean thermal sampling, with shallow XBTs

(sampling as deep as 460m) dominant in the 1970s and
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1980s, and deep XBTs (sampling as deep as 760m)

dominant in the 1990s. Like MBTs, XBTs are not very

accurate (nominally 60.18C for temperature and 62%

for depth), but both comprise a large part of the obser-

vational record of upper ocean temperatures. The pro-

filing CTD floats of the Argo program (Roemmich et al.

2009) began to provide accurate, year-round sampling

of upper ocean temperature starting in 2000. The array

started regionally but became near-global and largely

replaced theXBT for distributed oceanmeasurements by

2005. Early on, some of the floats only sampled to around

1000m, but as time has gone on, more floats have sam-

pled as deep as the 2000-m Argo target.

For climate studies, ocean temperature data are used

to estimate ocean heat content anomalies (OHCA).

There are many sources of uncertainty in estimates of

annual global integrals of OHCA. While reversing ther-

mometers and CTDs are relatively accurate, XBTs have

biases in both depth and temperature; different choices of

XBT bias corrections lead to large uncertainties from at

least 1993 to 2008 (Lyman et al. 2010; Palmer at al. 2010).

MBT bias corrections are equally important in earlier

years (Gouretski and Reseghetti 2010; Ishii and Kimoto

2009). Sampling uncertainty also contributes significantly

to the overall uncertainty and has strong dependence on

time (Lyman and Johnson 2008; Domingues et al. 2008;

Palmer and Brohan 2011), with larger uncertainties oc-

curring for earlier years when the global ocean is not well

sampled. Finally, uncertainties from mapping choices

and climatology choice also contribute to the overall

uncertainty. Mapping is variously done by bin averag-

ing (Palmer et al. 2007; Gouretski et al. 2012), objective

analysis (Ishii and Kimoto 2009; Levitus et al. 2009), or

reduced-space optimal interpolation (Domingues et al.

2008).

Climatologies representative of a single era or a long-

term mean from which to estimate anomalies in ocean

heat content have, historically, been difficult to compute

because of sparse historical sampling. Only in recent years

has the global ice-free ocean all been sampled adequately

in a given year or few years to construct a monthly cli-

matology for a fixed time period (e.g., Roemmich and

Gilson 2009). Having a climatological baseline using data

with a well-resolved seasonal cycle for a single short time

period (2005–10), as is done here, canbe very important in

improving the accuracy of estimates of global integrals of

OHCA in a historically sparsely sampled warming ocean,

to avoid aliasing large signals from the seasonal cycle into

the annual maps.

Here we estimate annual global integrals of ocean heat

content in five distinct depth layers from 1950 through

2011. We focus on how sparse irregular sampling and

choice of climatological baseline affects estimates of the

global integral of OHCA. Here these anomalies are es-

timated relative to a monthly Argo-period climatology,

with a well-resolved seasonal cycle collected over a rela-

tively short time period. The five distinct depth layers

(0–100, 100–300, 300–700, 700–900, and 900–1800m) are

chosen to capture the historical sampling patterns of

MBTs, XBTs, and Argo floats. Since profiles often ter-

minate at depths slightly shallower than the nominal

maximum instrument sampling depth, layer bottom

depths are chosen somewhat shallower than the nominal

maximal sampling depths of MBTs (100 versus 145–

300m), shallow XBTs (300 versus 460m), deep XBTs

(700 versus 760m), and Argo floats (900 and 1800 versus

1000 and 2000m, respectively) to maximize the number

of profiles spanning each layer yearly.

We further use sea surface height (SSH) as a proxy to

estimate the OHCA sampling uncertainty in each of the

depth intervals mentioned above, building on the work

of Lyman and Johnson (2008) for a single 0–700-m layer.

This study also builds on that study by making estimates

of global OHCA values from in situ data for each layer

as outlined above. The earlier study used only proxy

data to study sampling uncertainties, without producing

actual estimates of OHCA from in situ data. Here we

also quantify the effects of infilling on the global integral

of OHCA by performing two integrations. One assumes

zero anomalies in unsampled regions [zero-infill mean

(ZIF)] and the other that unsampled regions have anoma-

lies equal to the average anomaly of sampled regions

[representative mean (REP)]. We also build on previous

work, presenting an analysis of how choices of baseline

climatology can modify the effects of infilling assump-

tions on the global OHCA estimates.

2. Data

This study uses two sources of data. A Hadley Centre

observational dataset (EN3_v2a; Ingleby andHuddleston

2007) is used, withXBT andMBTbias corrections of Ishii

andKimoto (2009) applied.All the profiling float data are

removed from this dataset, leaving data from tempera-

ture profiles from bottle-station reversing thermometers,

CTDs, XBTs, MBTs, and moorings. Profiling float data

are obtained from the U.S. Argo Global Data Assem-

bly Center (GDAC), and data from floats with possible

pressure drifts are removed (Barker et al. 2011).Delayed-

mode data are used when available; otherwise real-time

data are used. Only data with quality flags of ‘‘good’’ are

retained.

We apply additional quality control when computing

OHCA to ensure that each layer is adequately sampled.

Profiles that do not extend to the bottom depth of a given

layer are not considered for that layer. Furthermore, for
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data from a profile to be used in any given layer, their

mean vertical measurement spacing must, on average, be

closer than twice the spacing of National Oceanographic

Data Center (NODC)WorldOceanAtlas standard levels

from 0 to 100m, and closer than 3 times the standard level

spacing below 100m.

3. Method

OHCA and its sampling uncertainty are computed

following Lyman and Johnson (2008), except this time,

the OHCA is computed from in situ data instead of

proxy data. Aside from the quality control steps men-

tioned above and the use of in situ data, the other major

differences are that OHCA is referenced to a seasonally

varying monthly Argo climatology and both the OHCA

and its sampling uncertainty are computed for five dis-

tinct depth layers (0–100, 100–300, 300–700, 700–900,

and 900–1800m) as detailed below.We discuss curves of

the global integral of OHCA for 0–100-, 0–300-, 0–700-,

0–900-, and 0–1800-m layers. We compute these curves

by adding the global integrals of OHCA for the appro-

priate sets of mapped layers.

a. OHCA mapping

Heat content in each of the five distinct layers is com-

puted first for every profile. A new seasonal climatology

of heat content with monthly resolution is computed

using Argo data from 2005 to 2010. This climatology is

removed from the heat content profiles to generate

anomalies for each layer adequately sampled by the

profiles. The results are then objectively mapped using

a covariance function with both a large (;1000km) scale

and a small (;100 km) scale (Willis et al. 2004; Lyman

and Johnson 2008), assuming a noise-to-signal variance

ratio of 2.2. Themapping scales and noise-to-signal ratios

could be refined to vary geographically in the future.

Ocean temperature covariance scales vary with latitude,

becoming elongated in the zonal direction near the

equator (e.g., Roemmich andGilson 2009). Theymay also

vary with depth (e.g., Carton et al. 1996).

b. Global integral of OHCA

Weexamine two simple assumptions that can bemade

when computing a global integral of OHCA, again fol-

lowing Lyman and Johnson (2008). The first assumption

is that anomalies are zero in regions that are not sam-

pled, a common one for objective mapping. Integrals of

the OHCA objective maps using this assumption have

been referred to previously as simple integrals or means

of the maps (Lyman and Johnson 2008). Here we will

use the more descriptive term zero-infill mean. This sort

of assumption is commonly used when integrating

objective maps (e.g., Ishii and Kimoto 2009; Levitus

et al. 2012), and sometimes when summing bin-averaged

data over the globe (Gouretski et al. 2012).

The second assumption is that the anomalies in re-

gions that are not sampled are the average of anomalies

in sampled regions, an assumption that has also been

applied to global sums of bin-averaged data (Palmer

et al. 2007). Integrals of OHCA maps using this as-

sumption have been referred to as the weighted integral

(Lyman and Johnson 2008). Here we will use the term

representative mean. Since objective maps also tend

to relax back to zero in areas that are undersampled,

making a representative mean using an objective map is

slightly more involved than doing so using bin-averaged

data. We apply the formalism of Lyman and Johnson

(2008) to counteract the tendency of objective maps to

relax to zero in data-poor regions when making a rep-

resentative mean for an objective map. There are other

more sophisticated methods for infilling gaps using sat-

ellite altimetry data either in an objective mapping for-

malism (e.g., Willis et al. 2004) or with reduced-space

optimal interpolation (e.g., Domingues et al. 2008), but

we do not address them here.

c. Sampling uncertainty of global OHCA integrals

Sampling uncertainties are computed in each mapped

layer by using Archiving, Validation, and Interpretation

of Satellite Oceanographic (AVISO) SSH as a proxy for

OHCA (Lyman and Johnson 2008). Distinct spatially

varying regression coefficients are computed between

SSH and theOHCA content for eachmapped layer using

data from1993 to 2011 inmodifiedWorldMeteorological

Organization (WMO) squares (Willis et al. 2004). The

regression coefficients are larger in the thermocline and

generally decrease with depth, likely owing to decreasing

vertical temperature stratification and eddy energy with

depth.

When spatially integrating the SSH proxy of OHCA,

areas that were not sampled are assumed to have the

same anomalies as the area average anomaly of sampled

regions. This representative mean yields an unbiased

estimate of the global integral of AVISO SSH, bolster-

ing confidence in the sampling uncertainties obtained by

the method (Lyman and Johnson 2008).

SSH as a proxy for OHCA is most applicable in the

layers spanning the thermocline, because SSH variabil-

ity is dominated by the energetic temperature variability

in these strongly stratified, mostly upper layers. The 0–

300-m layer is highly energetic and explains approxi-

mately 92% of the SSH variability (Llovel et al. 2013).

However, there still are strong correlations between SSH

and temperature at 400m (Fig. 8 of Wijffels et al. 2008),

with correlations .0.50 outside the tropics but lower
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values in the tropics where the thermocline is shallower

than 400m. For our choice of layers (Fig. 1) we find the

highest global area-weighted correlation coefficient be-

tween SSH and OHCA occurs in the 100–300-m layer

(0.54) and the lowest in the 900–1800-m layer (0.38). The

low tropical correlations in the 300–700-m layer (below

the tropical thermocline) are even lower in the deepest

900–1800-m layer analyzed here (Fig. 1), but correlations

also increase with increasing layer depth at some high-

latitude locations.

When adding sampling uncertainties of the distinct

depth layers, uncertainties are assumed to be correlated

in areas where both layers are sampled and assumed to

be uncorrelated if sampling areas in different layers do

not overlap. This procedure is detailed for a general lin-

ear mapping in appendix A. These results are dependent

on the spatial and temporal scales used in the mapping,

as well as the ratio of the unresolved noise and signal

variances.

While increasing the length or time scales for co-

variance functions increases the amount of data used,

the ratio of noise to signal variance will increase as well,

so the uncertainty might not decrease. Furthermore,

lengthening the temporal scale beyond annual cannot

overcome aliasing of energetic modes of interannual

ocean temperature variability, most prominently El Ni~no

and La Ni~na, since these phenomena redistribute large

quantities of ocean heat horizontally and vertically over

time scales shorter than a year (e.g., Johnson et al. 2000;

Roemmich and Gilson 2011) and are linked to the

seasonal cycle (e.g., Harrison and Larkin 1998; Larkin

and Harrison 2001; Stuecker et al. 2013).

The sampling uncertainty for the REP is also a mea-

sure of how well that method fills in data gaps. The

sampling uncertainty is computed by comparing sub-

sampledOHCASSHproxy curveswith completeOHCA

SSH proxy curves (Lyman and Johnson 2008). The com-

plete SSH fields contain eddies, gyres, and some portion

of the net warming signal in areas where there are no in

situ data. The sampling uncertainty is a measure of how

well the infilling represents missing variability that is

contained in the complete SSH fields. The REP estimates

produce a smaller sampling uncertainty than the ZIF

estimates because the former methodology incorporates

a more conservative, but perhaps naı̈ve, assumption

about the contribution of unsampled regions than the

latter (Lyman and Johnson 2008).

d. Climatology baseline shifts

We use a climatology based on Argo data from 2005

to 2010 (ClimArgo) because of Argo’s even sampling

throughout the year and its near-global, compara-

tively even spatial coverage of the upper 2000m of the

world’s oceans. The resulting climatology is a modern

one, and thus almost certainly warmer than a long-

term mean over our analysis period or conditions in, say,

1950 (as far back in time as estimates are attempted

here). Given the sparse sampling, how would the global

integrals change if a different, colder climatology were

used?

FIG. 1. Correlation coefficients between AVISO SSH and (a) 0–100-, (b) 100–300-, (c) 300–

700-, and (d) 900–1800-m OHCA. Correlation coefficients are computed using the same

methods as for regression coefficients (section 3c).

1948 JOURNAL OF CL IMATE VOLUME 27



We investigate this question by introducing a second

climatology, which is just the Argo climatology with

values shifted uniformly by a global representativemean

estimate of heat content anomaly for each distinct layer in

1950 (Clim1950). The general case, solved for any linear

mapping and any mean offset in the climatology, is de-

tailed in appendix B. We choose a representative mean

from 1950 so that the shift in the climatology spans a large

but realistic range [m1950,l, (B3) evaluated at 1950], per-

haps an upper bound for the modern historical record.

This shifted Argo climatology is considerably colder than

ClimArgo. The better to compare the resulting OHCA

curves, the REP global average heat content anomaly

from 1950 [m1950,lA, (B2) evaluated at 1950] is added

back to the OHCA curves estimated using Clim1950.

This addition shifts the REP curves estimated using

Clim1950 to overlay the ClimArgo curves from (B11).

However, shifts in the ZIF curves estimated using

Clim1950 are dependent on the sampling in each year

from (B10) and do not overlay each other.

The uniform cooling shifts applied to each layer of

ClimArgo to obtain Clim1950 only approximate the

magnitude of the global ocean temperature changes

from 1950 to 2005–10. Actual global ocean temperature

changes, even over several decades, exhibit strong re-

gional variations (e.g., Gleckler at al. 2012; Levitus

et al. 2012). Here we neglect the regional variations to

concentrate on the simpler first-order effects of uni-

form warming. By merely shifting the modern Argo

climatology we also avoid issues that would arise from

attempting to construct a global climatology during the

sparsely sampled 1950s.

4. Historical sampling

The historical record of vertical and horizontal structure

of ocean temperature sampling is linked to the history of

instrument development. The first worldwide survey of

upper ocean temperatures, completed with minimum–

maximum thermometers, was taken during the HMS

Challenger expedition in 1872–76. Those data have re-

cently been compared to Argo float data from 2004 to

2010, finding statistically significant ocean warming over

the intervening time interval (Roemmich et al. 2012). The

development of the reversing thermometer in 1874 al-

lowed measurement of temperature and depth over full

ocean depths to amaximumaccuracy of about 0.018Cand

0.5%, respectively (Warren 2008). However, reversing

thermometers require a ship to stop, and historical mea-

surements prior to the International Geophysical Year

(1957/58) are globally very sparse (Boyer et al. 2009).

The development of the MBT circa 1938 allowed mea-

surements from a moving ship, although the ship had to

slow to a few knots for best results, profiles were no

deeper than 300m, often only to 100m or so, and tem-

perature accuracy was probably not as good as the stated

0.18C (Emery and Thomson 1998). MBT depth accuracy

is at best 1% (Gouretski and Reseghetti 2010). None-

theless, MBT profiles are the predominant upper ocean

temperature observations from circa 1950 to 1969 (e.g.,

Johnson and Wijffels 2011). Their extensive use in the

Northern Hemisphere in the Pacific and Atlantic Oceans

during that time period is evident in the average yearly

0–100-m layer sampling density (Fig. 2a). Bottle mea-

surements that extend to depths of 1800m in these

same regions are far less extensive from 1950 to 1969

(Figs. 2e,i,m). The annual sampling fraction f
y
l in (A2) of

the 0–100-m layer exceeds 50% starting in 1956 (Fig. 3).

The widespread use of the MBT allows that 50% sam-

pling benchmark to be reached at this early date, but only

for the uppermost (0–100m) layer.

From circa 1970 to 1989, shallow XBTs, profiling as

deep as 460m, are predominant contributors to the his-

torical temperature record (e.g., Boyer et al. 2009;

Johnson and Wijffels 2011). Accuracies of 60.18C and

62% for temperature and depth, respectively, are spec-

ified for the XBT. However, systematic, time-dependent

biases can approach or exceed these values (e.g.,

Gouretski and Reseghetti 2010). The use of the shallow

XBT coincides with well-measured temperature (on an

annual basis) in the Northern Hemisphere areas of all

three oceans (now including the Indian Ocean) and ex-

tending to the 100–300-m layer (Figs. 2b,f). The Southern

Hemisphere subtropics are also somewhat better, al-

though still inadequately (in terms of annual averages)

measured in these layers during this time. Reversing

thermometer and CTD data collected during this period

increases temperature sampling in the 300–700-, 700–900-,

and 900–1800-m layers (Figs. 2j,n). The annual sampling

fraction of the 100–300-m layer exceeds 50% starting in

1967 (Fig. 3), as a result of the commencement of wide-

spread use of the shallow XBT starting around that time.

Deeper XBTs (measuring frequently to at least 700m,

with measurement accuracies and biases similar to the

shallow XBTs; e.g., Gouretski and Reseghetti 2010), al-

though introduced earlier, become an important source

of historical temperature data from circa 1990 to 2004

(e.g., Johnson and Wijffels 2011) during and after the

World Ocean Circulation Experiment (WOCE). During

this time period, adequate sampling extends into the

Southern Hemisphere subtropics of all three oceans, even

to the 300–700-m layer (Figs. 2c,g,k). The annual sampling

fraction of the 300–700-m layer exceeds 50% starting in

1983 (Fig. 3) as a result of the increasingly widespread

use of the deep XBT during the pre-WOCE large-scale

measurement programs. This sampling coverage to 700m
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peaks at a local temporal maximum of around 79% in

1994 and then declines to a local temporal maximum of

63% in 2001, perhaps because someXBTdata are slow to

filter into the data archival centers, but at least partly as

a result of difficulties sustaining gains in ocean observa-

tions at the end of WOCE. Deep CTD stations occupied

during WOCE further improve sampling in the 700–900-

and 900–1800-m (Fig. 2o) layers (but still not adequately

outside of the North Atlantic and western North Pacific

Oceans). These layers also show a similar decline be-

tween 1993 and 2000 with the end of WOCE (Fig. 3).

TheArgo programof autonomous profilingCTDfloats

(Roemmich et al. 2009) began sampling the upper half of

the ocean volume (nominally to 2000m) in the year 2000.

These floats have nominal temperature accuracy of

0.028C, although usually much better, and nominal pres-

sure (hence depth) accuracy of 0.12%. By 2005 (and

through 2010 and beyond) Argo achieved near-global

coverage in the ice-free oceans excluding marginal seas

down to 900m (Fig. 2l). However, the very light surface

waters of the tropics presented a challenge for some early

Argo floats, and not all of them could profile there much

beyond 1000m, leaving that area slightly undersampled

during 2005–10 (Fig. 2p). As more capable floats that can

profile from the surface to 2000m even in the tropics

replace the earlier, more limited floats, that coverage gap

is gradually being filled. The annual sampling fraction

of the 700–900-m layer exceeds 50% starting in 2003

FIG. 2. Means of annual in situ temperature data sampling density [see (A3)] for depth layers (a)–(d) 0–100, (e)–(h) 100–300, (i)–(l) 300–700,

and (m)–(p) 900–1800m and time ranges (left)–(right) 1950–69, 1970–89, 1990–2004, and 2005–10.

FIG. 3. Annual fractional coverage of global ice-free ocean

sampled for in situ ocean temperature [see (A2)] for (proceeding

from lightest gray to black lines) 0–100, 100–300, 300–700, 700–900,

and 900–1800m.
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(Fig. 3). That same milestone is reached for the 900–

1800-m layer starting in 2004 as a result of the increasingly

capable and widespread Argo array. By 2010, over 80%

of the global ice-free oceans are sampled even to the 900–

1800-m layer (Fig. 3).

Sampling of the ocean temperature below 2000m (not

treated here) is still very sparse, limited at present to

shipboard CTDs. In most areas, comparisons of collo-

cated oceanographic sections (e.g., Purkey and Johnson

2010) or data assimilation into models (e.g., Kouketsu

et al. 2011) may be the most appropriate way to assess

decadal changes below 2000m, although it is possible to

map multidecadal changes in ocean heat content in the

North Atlantic (e.g., Lozier et al. 2008; Mauritzen et al.

2012), historically the best sampled ocean.

5. Climatologies and time-varying spatial coverage

The method used to integrate annual OHCA maps

globally has a large impact on estimates of heat uptake

since 1950 in the upper 0–1800m of the global oceans.

The ZIF estimates referenced to ClimArgo (Fig. 4,

dashed gray lines) yield a smaller overall rate of heat

uptake since 1950 than the REP estimates (Fig. 4, solid

black lines) in all depth ranges considered. The ZIF

estimates referenced to theClimArgo (presumablywarm)

climatology tend to relax back to zero when the data

coverage for the integrated layers (Fig. 3) becomes

sparse. This result occurs because the objective maps

relax back to zero anomaly where data are sparse; zero

anomaly in most locations will, presumably, tend to be

on the warm side of the (poorly known) long-term av-

erage because the Argo climatology used is modern

(2005–10). In otherwords, the annual ZIF estimates using

a modern climatology are pulled toward cooler values

earlier in time by cooler temperature data, but for times

and locations when and where data are sparse, they relax

back to the mean, which is warm owing to the modern

climatology used.

One way to demonstrate this effect is to use a cooler

climatology, Clim1950, to produce contrasting curves for

the ZIF estimates (Fig. 4, black dashed lines). Clim1950 is

simply a shift of the Argo climatology to the colder mean

1950 values estimated using the representative mean

anomalies for each layer. It may be about the coldest

reasonable climatology that could be used for assessing

heat content changes over this time period. The use of

Clim1950 results in a much larger warming trend for the

curves produced from ZIF estimates than does the use of

ClimArgo. This difference arises solely because ZIF es-

timates assume zero anomalies in unsampled regions.

With a climatology shifted to colder 1950 mean values,

the large extents of the maps with sparse data in the early

years all relax back to relatively colder 1950 mean values

as a baseline, rather than the warmer Argo climatology

values. In the more recent years, the larger sampled

fraction of the global ocean (Fig. 3) means that ZIF

estimates for either the colder Clim1950 or the warmer

modern ClimArgo are more constrained by data to be

similar (Fig. 4). Hence, for the ZIF estimates, the chang-

ing and sometimes sparse sampling patterns combine with

the climatology to produce trends that depend on the

climatology values, especially if those trend estimates

span times of sparse sampling. Shifting the Argo clima-

tology using representative means between 1950 and 2000

produces similar shifts in the ZIF estimates [see (B10);

plots not shown].

The size of the shifts in the ZIF estimates is dependent

on the fraction of the globe that is covered each year by

in situ sampling and by the magnitude of the mean shift

[see (B7)]. The result may not always be intuitive. For

FIG. 4. Time series of annual average global integrals of upper

ocean heat content anomaly [zettajoules (ZJ)] for (a) 0–100, (b) 0–

300, (c) 0–700, and (d) 0–1800m. Time series are shown using ZIF

estimates relative to both ClimArgo (dashed gray lines) and

Clim1950 (dashed black lines). Time series are also shown using

REP estimates (black solid lines), which are not affected by shifts

in the mean climatology from (B11). Thin vertical lines denote

when the coverage (Fig. 3) reaches 50% in (a)–(d).
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example, in 2010, the 0–1800-mClim1950ZIF value is 50

ZJ (zettajoules; 1 ZJ5 1021 J) less than the ClimArgo ZIF

value (Fig. 4d, dashed lines), despite Argo’s near global

coverage in 2010.We can compute the expected size of the

shift from (B10): The mean shift that the Clim1950 curve

experiences in 2010 is (12 f 2010021800)m
1950,021800A. In this

case, m1950,021800A’2500ZJ (Fig. 4d) and f 2010021800 ’ .9

(Fig. 3), so the observed offset in 2010 of 50 ZJ is to be

expected.An intermediate climatology, say one shifted to

1980 levels, would result in a smaller cold bias in modern

times, but a large warm bias in earlier times.

Unlike the ZIF estimates, the REP estimates (Fig. 4,

black solid line) are the same for both the Clim1950

values and the ClimArgo from (B11). This result holds

because the REP estimates avoid any relaxation back to

climatological values by assuming that themean anomaly

of the sampled regions applies to the unsampled regions.

6. Sampling uncertainty

Computing the global integral using the REP estimates

increases both the signal within and the noise from the

observed areas of the global ocean by extending both

quantities to the unmeasured areas (Lyman and Johnson

2008). The sampling uncertainty (Fig. 5), which generally

grows as sampling becomes sparse (Fig. 3), is only one

component of the total uncertainty (e.g., Lyman et al.

2010). Here we do not concern ourselves with other con-

tributions, but there is much work being done by the re-

search community on quantifying uncertainties remaining

inXBTandMBTbias corrections [seeCowley et al. (2013)

for a recent example], as well as those owing to differences

in quality control, mapping, and climatology.

Sampling uncertainty (Fig. 5) increases greatly with

decreased area coverage (Fig. 3), so it ramps up going

back in time prior to about 1956 in the 0–100-m layer.

After that date, around the time of the International

Geophysical Year, MBT use expanded. The advent of

the IGY further reduces sampling uncertainties in all

layers because of an increase in reversing thermometer

data from deep oceanographic stations. The sampling

uncertainty for 0–300m declines further after around

1969, with the increasingly widespread use of the shal-

low XBT, and decreases markedly for 0–700m around

1990, with the more widespread use of the deep XBT

and the advent of WOCE. Again, WOCE reduces

sampling uncertainty in all layers during the 1990s be-

cause of increased CTD stations worldwide. However,

around the year 2000, there is a slight increase in sam-

pling uncertainty in all layers as WOCE sampling winds

down before Argo sampling spins up. Starting around

2001–03, sampling uncertainties in all layers begin to

shrink, reaching a historical low by 2005–06, depending

on the depth of integration, and remaining small as Argo

coverage continues to improve.

Sampling uncertainties (Fig. 5) generally decrease as

areal coverage (Fig. 3) increases. This inverse relation-

ship is not perfect, at least partly because OHCA vari-

ance is spatially variable, so increasing sampling in one

region might reduce sampling uncertainty more than in-

creasing it the same amount in another region. Further-

more, the contribution to sampling uncertainty in deeper

layers is relatively small even though the area sampled is

also small, except in recent years. This situation likely

holds owing to the decreasing heat content anomaly sig-

nals of eddies, planetary waves, gyre shifts, and even the

net warming signal with increasing depth.

7. Discussion

Ocean warming is observed between 1950 and 2011 in

all layers for both methods of global integration: zero-

infilled (ZIF) or representative (REP) means (Fig. 4).

However, the REP estimates are more likely to result in

an unbiased trend (Lyman and Johnson 2008). Further-

more, we show that the REP estimates are insensitive to

mean shifts in the background climatology, whereas the

trends from the ZIF estimates vary greatly depending on

such shifts. For a modern (warmer) climatology, ZIF es-

timates for early, poorly sampled years shift back toward

zero anomaly (warm conditions), increasingly reducing

the warming trend the further back in time that trend is

FIG. 5. Estimates of sampling uncertainties for the ZIF estimates

(following Lyman and Johnson 2008) at one standard error of the

mean for (proceeding from lightest gray to black lines) 0–100, 0–

300, 0–700, 0–900, and 0–1800m. Uncertainties are computed by

summing up sampling uncertainties for each layer from the surface

downward (appendix A). Where sampled layers overlap in space,

uncertainties are added. Where sampled layers do not spatially

overlap, uncertainties are summed in quadrature.
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computed. In contrast, for climatologies shifted to early

(colder) values, ZIF estimates for early years are cold, but

more appropriately warm in later years because the data

coverage of the warmed oceans is improved in recent

years. This difference results in a very different trend

depending on the climatology for ZIF estimates. While

further analyses are needed to quantify the impacts of

regional variability in climatologies (rather than the

global shifts applied here) on the OHCA curves, REP

estimates provide an estimate of the warming rate that

does not depend on the mean heat content of the clima-

tology. To the extent that the oceans are warming more

or less uniformly within depth layers, REP estimates are

preferable to ZIF estimates.

Here we only compute and analyze sampling un-

certainties. Before the significance of the trends in the

global integral OHCA can be completely determined

over various lengths of the historical record, it will be

necessary to examine other sources of uncertainty in

more detail. These uncertainties include factors owing to

quality control, choice of XBT and MBT bias correction,

choice of climatology, and choice of mapping method.

Nonetheless, when areal coverage gets smaller, OHCA

sampling uncertainties generally get larger. There is a

roughly inverse relationship between these quantities

in each layer, with smaller and smaller contributions of

the uncertainty per unit depth with increasing depth. Of

course, the warming signal in the upper 1800m also gets

smaller per unit depthwith increasing depth (e.g., Johnson

andWijffels 2011). The 50% coverage benchmark (Fig. 4,

vertical lines) discussed above for the different layers is

arbitrary but is a reminder that below some areal cover-

age, it becomes difficult to make a realistic estimate of the

global integral OHCA for a given year in a given layer, no

matter the mapping method.

In Lyman and Johnson (2008), a similarly arbitrary

benchmark of 10 ZJ was used to highlight that sampling

before 1967 produced large uncertainties. That bench-

mark [Fig. 1 of Lyman and Johnson (2008)] roughly

corresponds to the benchmark used here of 50% cover-

age in the deepest layer under consideration. For this

analysis increases in coverage for the deepest layer

under consideration correspond to decreases in sampling

uncertainty from the surface down to that layer (Fig. 6).

The mean of the 0–700-m layer sampling uncertainty

between 45% and 55% coverage for the 300–700-m layer

is 11.46 1.4 ZJ, similar to the Lyman and Johnson (2008)

benchmark.

Note that in Lyman and Johnson (2008) shallowXBTs

were extended to 700m followingWillis et al. (2004), but

that extrapolation technique is not employed here. As

a result, before widespread use of the deep XBT, the 0–

700-m sampling density in Lyman and Johnson (2008)

roughly corresponds to the 100–300-m sampling density

here, which reaches 50% in 1967. The 300–700-m sam-

pling density here does not reach 50% until 1983, when

the deep XBT came into widespread use.

Computation of the sampling uncertainty requires the

assumption that SSH is directly proportional to OHCA

in a depth layer. While this is a reasonable assumption,

the two are not directly related because SSH also de-

pends on OHCA over the entire water column, changes

in salinity, and mass changes. On the other hand, sam-

pling density is a product of themapping and requires no

assumption about the relationship of SSH to OHCA.

Finally, it would seem unwise to apply infilling assump-

tions to over 50% of the mapping area when computing

a global integral; thus, the 50%benchmark is an arbitrary,

but perhaps reasonable, choice.

We estimate warming rates for the different layers by

computing trends using unweighted least squares REP

OHCA annual values from the benchmark years of 1956,

1967, 1983, and 2004, through the final year, 2011 (Table 1).

All warming estimates (Wm22) presented in this paper are

calculated as means for Earth’s entire surface area. We do

not use a weighted least squares formalism or report un-

certainties because the sampling uncertainties estimated

here are not the full uncertainty, which can bemuch larger

FIG. 6. The 0–700-m sampling uncertainty (Fig. 5) vs the 300–700-m

annual fractional coverage (Fig. 3).
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(Lyman et al. 2010). For adequately sampled time periods,

warming trends generally increase with increasing depth,

as the surface-intensified warming signal penetrates to at

least 1500m (e.g., Levitus et al. 2012). In recent years, from

2004 to 2011, while the upper ocean is not warming, the

ocean continues to absorb heat at depth (e.g., Levitus et al.

2012; vonSchuckmannandLeTraon2011), here estimated

at a rate of 0.29Wm22 when integrating over 0–1800m.

The warming estimated here for 0–700-m REP from 1993

through 2011 is 0.49Wm22, very similar to the value of

0.48Wm22 fromour previously published curve (Johnson

et al. 2012). The historical rates for 0–100, 0–300, and 0–

700m estimated here are generally larger than other

analyses (e.g., Cowley et al. 2013; Levitus et al. 2012; Ishii

and Kimoto 2009; Domingues et al. 2008), at least partly

owing to our use of REP, which increases the trend by

assuming the anomaly in unsampled areas is the sameas the

mean anomaly of sampled areas. Our ZIF estimates of the

warming from 1955 to 2010 range from 0.05 to 0.30Wm22

for 0–700m and from 0.06 to 0.35Wm22 for 0–1800m (Fig.

4). This range is consistent with Levitus et al. (2012), which

reports warming rates of 0.19Wm22 for 0–700m and

0.27Wm22 for 0–2000m over the same period.

While XBT biases have received much attention in the

last few years, MBTs are a large source of upper ocean

temperature data from the 1950s through the 1960s, and

also appear to have large, possibly time-dependent biases

(e.g., Gouretski and Reseghetti 2010; Hamon et al. 2012;

Ishii and Kimoto 2009; Levitus et al. 2009, 2012). Sam-

pling uncertainties for the REP estimate during this early

time period are large (Fig. 5); however, the warming

signal is also large (Fig. 4). To determine the statistical

significance of this large signal, it will be necessary to

estimate all possible sources of uncertainty, including

uncertainties in MBT bias corrections.

Finally, the results presented here hold generally for

any linear mapping (appendix B) but the magnitudes of

the results are applicable only to the particular mapping

scheme used here. Changing the mapping scheme, in-

cluding using different time or length scales or different

mapping formalism, will alter the results quantitatively

but not alter the conclusions qualitatively.
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APPENDIX A

Summation of Uncertainty

a. Sampling uncertainty computation for a general
linear mapping

In using AVISO SSH as a proxy for every depth layer

of OHCA (following Lyman and Johnson 2008), we

implicitly assume that eddy statistics of the upper layers

are similar to deep layers. In each depth layer the local

correlations of AVISO SSH with OHCA are estimated

on a coarse grid. The resulting coefficients are used to

construct proxy OHCA fields that are then subsampled

in locations of in situ observation. Sampling uncertainty

in a depth layer (SEj, where the integer numbers 1, 2, 3,

4, and 5 have been assigned the 0–100-, 100–300-, 300–

700-, 700–900-, and 900–1800-m layers, respectively), is

defined as the standard deviations of the differences

between heat content curves computed from the proxy

OHCA fields and the in situ OHCA fields (Lyman and

Johnson 2008).

b. Addition of sampling uncertainty when summing
depth layer OHCA

We alsomake another assumption, that the correlated

sampling uncertainty in depth layer j between depth

layers i and j (CorrSEij) is proportional to the square

root of the percentage change in the globe coverage for

depth layer i (Dy
i /f

y
j ):

TABLE 1. Warming reported as heat flux applied to Earth’s en-

tire surface area (Wm22) corresponding to trends in annual REP

OHCA estimates from unweighted linear fits from benchmark

years through 2011 for different depths of integration (left col-

umn). A benchmark year is defined as the year in which sampling

coverage, all layers being considered, first exceeds 50% and re-

mains .50% thereafter. Layer warming trends over time periods

during which coverage in a layer is ,50% in any year, indicated

here by a dash, are not reported.

Time period

Depth layer 1956–2011 1967–2011 1983–2011 2004–2011

0–100m 0.07Wm22 0.10Wm22 0.09Wm22 20.04Wm22

0–300m — 0.19Wm22 0.25Wm22 0.10Wm22

0–700m — — 0.43Wm22 0.13Wm22

0–1800m — — — 0.29Wm22
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The fractional coverage f
y
l for depth layer l and year

y is defined as

f
y
l 5

�
J

j50
�
I

i50

h1kii,j dAi,j

A
, (A2)

where h1kii,j is the sampling density for a given data

distribution obsk. The sampling density is a linear

mapping to location i, j where each datum at position k,

for depth layer l and year y, has been replaced by unity.

Here dAi,j is the area represented by the location i, j, and

A[�J
j50�

I
i50 dAi,j, the total area mapped [taken from

Lyman and Johnson (2008)]. Also, f
y
l and h1kii,j quantify

the density of the sampling based on the data distribu-

tion and the particulars of temporal and spatial scales of

whatever mapping scheme is being employed (Lyman

and Johnson 2008). This methodology is a more quanti-

tative assessment of sampling density than othermethods

sometimes used, because it depends on the particulars

of the mapping scheme [including correlation functions,

covariance length scales, and signal-to-noise variance

ratios for a standard objective map (e.g., Bretherton et al.

1976)] rather than, for example, some arbitrary threshold

such as a floor on the number of data points contained in

a box for that box to be included in the calculation.

Summing the correlated sampling uncertainties from

the surface to the bottom of a given depth layer and then

adding the resulting uncertainties in quadrature (thus

assuming they are uncorrelated) yields

TSEm 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
5

i51

 
�
m

j51

CorrSEij

!2
vuut , (A3)

where TSEm is the total sampling uncertainty from the

surface to the bottom of layer m.

APPENDIX B

Global Integrals

General solution for the effects of uniform
climatological shifts on global integrals

Two global integrals are examined in this paper, one

based on the zero-infilled integrals or means (ZIF) and

the other based on the representative integrals or means

(REP). They can be defined as

ZIF5 �
J

j50
�
I

i50

hobskii,j dAi,j (B1)

and

REP5

A �
J

j50
�
I

i50

hobskii,j dAi,j

�
J

j50
�
I

i50

h1kii,j dAi,j

, (B2)

where hobskii,j is any linear mapping of some distribu-

tion of observation obsk on a depth layer l and for year

y to a location i, j and the other terms are defined in

appendix A.

If the obsk on depth layer l are shifted by a constant

value, in this case the representative mean for year ym,

then

m
y
m
,l

k [

�
J

j50
�
I

i50

hobskii,j dAi,j

�
J

j50
�
I

i50

h1kii,j dAi,j

. (B3)

Here the mapping hobskii,j is dependent on year ym and

depth layer l. Adding this shift (B1) and (B2) become

ZIFs 5 �
J

j50
�
I

i50

hobsk 2m
y
m
,l

k ii,j dAi,j (B4)

and

REP s 5

A �
J

j50
�
I

i50

hobsk2m
y
m
,l

k ii,j dAi,j

�
J

j50
�
I

i50

h1kii,j dAi,j

, (B5)

whereZIFs andREPs are integrals that have been shifted

by this spatially uniform mean. Since the mappings are

linear and m
ym,l
k is spatially constant, and therefore not

dependent on k, this term can be moved outside the sum

so that (B4) and (B5) become

ZIF s 5 �
J

j50
�
I

i50

hobskii,j dAi,j 2my
m
,l �

J

j50
�
I

i50

h1kii,j dAi,j

(B6)

and
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Equations (B6) and (B7) simplify to

ZIFs 5ZIF2 f
y
l m

y
m
,lA (B8)

and

REPs5REP2my
m
,lA , (B9)

where f
y
l is the fractional coverage from (A2). Thus

REPs has shifted by area integral of representativemean

for year ym, m
ym,lA [(B2) evaluated at ym]. This shift

is independent of the sampling in the mapping and

therefore independent of the year that of the map, y.

On the other hand, ZIFs is shifted by the fraction of the

area integral of representative mean that was sampled,

f
y
l m

ym,lA, and is dependent on y. These results are in-

dependent of mapping or mean offset.

When plotting shifted OHCA curves, it is useful to

offset the results in order to focus attention on changes

in trends rather than simple offsets. Here we have chosen

to offset the shifted OHCA curves by the area integral of

the climatology offset, mym ,lA. For plotting purposes,

(B8) and (B9) now become

ZIFs 5ZIF1my
m
,lA(12 f

y
l ) (B10)

and

REPs 5REP. (B11)

Thus, the REP result is independent of baseline shifts in

climatology, whereas the ZIF result for any given year is

sensitive to baseline shifts proportional to the unsampled

area for that year.
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